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ABSTRACT

Retinal ischemia/reperfusion (I/R) is one of the most common pathologies of many
vision-threatening diseases and is caused by blood-retinal barrier (BRB) breakdown
and the resulting inflammatory infiltration. Targeting BRB is promising for retinal I/R
treatment. Mesenchymal stromal cells (MSCs) are emerging as novel therapeutic
strategies. Although intravitreal injection targets retina, the restricted number of
injected cells still requires the precise biodistribution of MSCs near the injury site. Here,
we found that retinal I/R led to BRB breakdown, which induced protein and cell leakage
from the circulation. Retinal cell death and diminished visual function were
subsequently detected. Moreover, the expression of the chemokine CCL5 increased
after retinal I/R, and CCLS5 colocalized with the BRB. We then overexpressed CCR5 in
human induced pluripotent stem cell-derived MSCs (iMSCs). In vivo, intravitreal
injected iIMSCCCR® preferentially migrated and directly integrated into the BRB, which
preferably restored BRB integrity and eventually promoted retinal function recovery
after retinal I/R. In summary, our work suggested that iMSCs act as biopatches for BRB
preservation and that iMSC-based therapy is a promising therapeutic approach for

retinal diseases related to I/R.
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INTRODUCTION

Retinal ischemia/reperfusion (I/R), a process whereby initial ischemia and
subsequent recovery of the blood supply in the retina occur,' is one of the most common
pathological processes in many vision-threatening diseases, including glaucoma,
diabetic retinopathy and central retinal artery occlusion,>* and causes 4.68 million cases
of blindness per year worldwide.* Current clinical interventions, including pars plana
vitrectomy and anti-VEGF injection, target only the middle-to-late stages of retinal I/R-
related diseases, such as vitreous hemorrhage or neovascularization, when vision loss
is likely irreversible.® Pathologically, unlike in peripheral organs, retinal I/R first leads
to the disruption of specialized vascular barrier integrity, the blood-retinal barrier
(BRB), and then results in inflammatory infiltration, ultimately causing a self-
reinforcing destructive cascade involving ganglion cell apoptosis and microglial
activation.®” Hence, an effective way to restore BRB integrity and eventually terminate
this microenvironmental cascade at the early stage is promising for clinical transition.

Mesenchymal stromal cells (MSCs) represent a promising cell-based therapeutic
option for refractory ocular diseases.® On the one hand, MSC extracts, including
extracellular vesicles (EVs) and microRNAs, alleviate retinal injuries through various
biochemical mechanisms.'®!! The administration of MSC-derived EVs (MSC-EVs) in
a glaucoma model enhances retinal function recovery by decreasing neuroinflammation
and apoptosis in retinal tissue.!! MicroRNA192 from MSC-EVs relieves the
inflammatory response and angiogenesis in oxygen-induced retinopathy.!® On the other

hand, MSCs provide structural support for specialized structures that MSC extracts do



63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

not preform. MSCs improve fracture healing by directly targeting the injury site and
functioning as bioscaffolds for osteogenesis.!*!* Additionally, for barrier preservation,
MSCs contribute to the vasoconstriction capacity of the blood-brain barrier (BBB),
mimicking an in vitro model.'* Thus, we speculated that MSCs could patch the BRB
by providing structural support in retinal I/R in vivo. However, primary MSCs have
limited passages in vitro and exhibit biological and functional heterogeneity, which may
raise concerns about their safety and effectiveness.!> Previous study in our lab has
generated highly homogeneous MSCs derived from human induced pluripotent stem
cells (hiPSCs), which showed considerable similarity in function.!® Moreover, since
hiPSCs can differentiate into homogeneous MSCs in a large quantity,!” hiPSC-derived
MSCs (iMSCs) can be a homogenous and unlimited source for cell therapy in future
clinical applications.'® Other obstacles limiting the clinical application of MSCs include
their unsatisfactory homing and planting capacity.'®?° For retinal disease treatment,
although intravitreal injection targets the retina, the restricted number of injected cells
still requires the precise biodistribution of MSCs near the injury site.?!??

Chemokine ligands and chemokine receptors guide the directional trafficking of
MSCs not only for organ-specific migration but also for niche-specific distribution
within organs. MSCs can help repair diabetic skin wounds, where they
transdifferentiate into multiple skin cell types to assist regenerative wound healing via
the CXCL16-CXCR®6 axis.?* Additionally, the CXCL12-CCR4 axis plays an important

24,25

role in the homing of MSCs to the hematopoiesis niche in the bone marrow,”"~ while

the CCL3—CCRI1 axis is involved in MSC migration to bone fracture sites for
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osteogenesis.”® Therefore, we hypothesized that genetically edited iMSCs that express
the proper chemokine receptor would migrate to the BRB, improve BRB integrity and

eventually promote retinal function recovery after retinal I/R.

RESULTS
Blood-retinal barrier disruption after retinal I/R

To investigate the impact of I/R on retinal tissue, we first established a retinal I/R
model through internal carotid artery occlusion (ICAO) (Fig. S1A) and employed
immunofluorescence staining to assess the integrity of the BRB at 6 hours (6 h), 1 day
(1 d) and 3 days (3 d) after retinal I/R, which can be reflected by tight junction coverage
and pericyte coverage.?”?® The integrity of Claudin5, a tight junction protein, and
pericyte coverage were compromised after retinal I/R and deteriorated over time (Fig.
1A-D). The integrity of ZO-1, another tight junction protein of the BRB, also decreased
at 1 d after retinal I/R (Fig. S1B, D). For further verification, we focused on the leakage
of serum protein and red blood cells (RBCs) in retinal tissue. Immunofluorescence
staining revealed serum protein fibrinogen leakage and RBC leakage into retinal tissue
after retinal I/R, which increased over time (Fig. 1E-H). Additionally, F4/80"
macrophages emigrated from blood vessels and infiltrated retinal tissue after retinal I/R
(Fig. SIC, E). Taken together, these results confirmed that retinal I/R resulted in
breakdown of the BRB, which deteriorated over time. Since the resulting inflammatory
infiltration is an essential driver of the destructive retinal I/R cascade,” retinal cell

death was determined via in situ terminal deoxynucleotidyl transferase dUTP nick end
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labeling (TUNEL) staining. For completeness of inquiry and clarity of expression, we
artificially divided the retina into three different positions according to the anatomy,
including the center (within 200 um of the optic disc), far-periphery (retinal margin),
and mid-periphery (between the 2 positions stipulated above). Retinal section staining
revealed that the degree of apoptosis at each position increased with time after retinal

IR (Fig. 11, J).

The expression of CCLS increased after retinal I/R

There are multiple mechanisms underlying I/R injury, including calcium overload,
oxidative stress and mitochondrial dysfunction.?*’! Retinas from the sham and I/R
groups were obtained 1 d after retinal I/R for transcriptome sequencing to investigate
changes in the retinal microenvironment and outstanding pathways after retinal I/R and
identify potential therapeutic targets. Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis suggested that the interaction of chemokines and corresponding
receptors might play an important role (Fig. 2A), and the spectrum of chemokines
changed greatly after retinal I/R (Fig. S2A). Considering that the chemokine/chemokine
receptor axis is indispensable for MSC migration, we next obtained retinas 1 d after
retinal I/R to detect the mRNA levels of chemokines, which were reported to be
associated with I/R changes,*>* including CCL2, CCL5, CCL7, CCL12, CXCL2, and
CXCL12, and found that the mRNA level of Ccl5 increased most markedly (Fig. 2B).
Furthermore, the mRNA level of Ccl5 peaked at 1 d after retinal I/R (Fig. 2C),

suggesting the potential optimal therapeutic timing. Moreover, flow cytometry analysis



129  revealed that the expression of CCLS in retinas increased at 1 d after retinal I/R (Fig.
130 2D, E). Since retinal I/R leads to BRB damage, we next explored the relationship
131 between CCLS5 and the BRB. Immunofluorescence staining revealed that more than 50%
132 of the vessels colocalized with CCLS5 in the superficial, intermediate and deep layers
133 (Fig. 2F, G; Fig. S3A), which suggested that retinal vessels could be targeted via the
134  CCL5-CCRS axis. In addition, Gene set enrichment analysis (GSEA) revealed
135  microenvironmental changes, including immune activation, matrix and vasculature
136  reorganization and neuronal system degeneration in the retina after retinal I/R (Fig.
137  S4A-C). Together, these results presented that the expression of CCLS5 increased and
138  peaked at 1 d after retinal I/R in the retina and CCLS5 prominently colocalized with the
139  BRB, suggesting that targeting the BRB via chemotaxis of CCL5 at 1 d after retinal I/R
140  could be promising.

141

142 Overexpression of CCRS improved the migratory capacity of iMSCs in response
143 to CCLS5

144 MSC-based therapy may serve as a potential intervention for retinal I/R-related
145  diseases. To eliminate the heterogeneity of MSCs, we differentiated hiPSCs, which
146 expressed stemness markers, including Nanog, Oct4, and Sox2 (Fig. S5B), into MSCs
147  according to methods reported previously (Fig. S5A).'® iMSCs still had adipogenic,
148  osteogenic, and chondrogenic potential (Fig. S5C) and exhibited a typical MSC surface
149  pattern, in which CD29, CD44, CD73 and CD90 were positive and CD34 and CD45

150  were negative (Fig. S5D). Next, in light of increased CCL5 colocalized with the BRB
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after retinal I/R, we speculated that iMSCs could be recruited to the damaged BRB via
the CCL5-CCRS axis, which may improve the effect of MSC-based therapy.
Considering that MSCs express chemokine receptors at an almost negligible level,** we
transduced iMSCs with lentiviral vectors encoding CCRS (referred to as iMSCC“R%) or
tdTomato (referred to as iMSCYT™3) to increase CCRS expression. The cells
expressing tdTomato fluorescence were isolated via flow cytometry, and the mRNA and
protein levels of CCR5 were determined (Fig. SS5E-G).

We next focused on the migratory capacity of iMSC“R?

in response to CCLS5. First,
we compared the migratory capacity of iMSCCR®S and iMSCYTM ynder the
recruitment of human CCL5 (hCCLS5) and murine CCL5 (mCCLS5) respectively. In vitro,
transwell migration assays revealed that IMSCC“®’ had greater migratory capacity than
iMSCWTomaie in both the hCCL5 and mCCL5 groups, and human iMSC®®® also
responded to mCCL5 (Fig. 3A, B). Next, we explored whether iMSC®“®> also had
greater migratory and planting capacity in vivo. One day after retinal I/R, the mice from
the I/R groups and sham groups both received intravitreal injections of iMSCTomato or
iMSCCR3 Then, the mice were sacrificed at 4 days post-transplantation (4 dpt) and 7
days post-transplantation (7 dpt), and the number and biodistribution of iMSCs in the
retina were detected and quantified. Compared with iMSCUTomate  j\MSCCECRS
preferentially migrated and integrated into the BRB at both 4 dpt and 7 dpt in the /R
groups but not in the sham groups (Fig. 3C, D). Overall, we successfully established a

homogeneous iMSC lineage and overexpressed CCRS5 in iMSCs. Additionally, we

demonstrated that iMSCRS exhibited increased migratory capacity in vitro and was
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preferably integrated into the BRB as a biopatch in vivo.

iMSCCCRS infusion protected against damage to the BRB and visual function
caused by retinal I/R

Since iMSC®“® migrated and integrated to blood vessels, we focused on whether
iMSCCCR could effectively restore BRB integrity as well as retinal function after retinal
I/R. For this purpose, mice received intravitreal injections of PBS, iMSC!Tomate or
iIMSCCR3 at 1 d after retinal I/R, and retinas were obtained at 7 d after iMSC injection
for further investigation (Fig. 4A). First, we employed immunofluorescence staining to
detect the integrity of the BRB. Compared with the PBS and iMSCU™ma° groyps, the
iIMSCCR3 group presented less attenuation of Claudin5 coverage and pericyte coverage
and less leakage of RBCs and fibrinogen, suggesting that iMSCCR° effectively restored
BRB integrity (Fig. 4B-D, F; Fig. S6A, B). In addition, TUNEL staining revealed
decreased degree of apoptosis in each position of the retina (Fig. 4E). Furthermore,
iMSCCRS treatment effectively increased the amplitudes of a- and b-waves and
decreased implicit times compared with those in the PBS and iMSC'™™ treatment,
suggesting retinal function recovery, as shown by ERG (Fig. 5A, B). Besides, we also
focused on the long-term effect of iMSCC“®’ treatment on retinal function recovery.
ERG was analyzed 2 months after iMSC““®’ injection, and the results showed that
iMSCCRS treatment enhanced retinal function recovery compared with PBS and
iMSCWTomale treatment in a long term (Fig. S7A, B). Taken together, these findings

CCCRS

suggested that intravitreal injection of iMS could protect against BRB damage
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and enhance retinal function recovery following retinal I/R.

In conclusion, we revealed BRB breakdown following retinal I/R and the resulting
vascular content leakage, eventually leading to retinal cell death. Next, we found that
the chemokine-chemokine receptor pathway was significantly involved in retinal I/R-
related changes and that CCLS expression increased most markedly and strongly
colocalized with the BRB. Then, we generated the iMSCC“®° lineage, which exhibited
better migratory capacity in vitro. In vivo, iMSC“® acting as “biopatches”, could
enhance BRB integrity via direct integration into the BRB, thus improving retinal

function recovery after retinal I/R (Fig. 6).

DISCUSSION

In the present study, retinal I/R led to BRB breakdown and vascular content leakage,
resulting in retinal cell death and deterioration of visual function. Additionally, we
examined the changes in the spectrum of chemokines following retinal I/R and found
that CCL5 expression increased most markedly and remarkably around retinal vessels.
Given the importance of the chemokine/chemokine receptor axis in cell migration, we
engineered iMSCC“®>| which displayed enhanced migratory capacity in vitro. In vivo,
infused iMSC““R® preferentially migrated and directly integrated into the BRB, which
notably patched the BRB and improved the retinal function recovery after retinal I/R.

Given their tissue regeneration capacity and safety, MSCs have become potential
candidates for cell therapy and translational medicine. The application of MSC-based
therapy is promising for treating I/R in both peripheral organs and the central nervous

10
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system (CNS) through multiple mechanisms.* In peripheral organs, exogenous MSCs
mainly protect parenchymal cells directly against I/R injury through their anti-apoptotic,
anti-inflammatory or antioxidative effects. For example, MSC-derived microRNA had
cardioprotective effects against myocardial I/R injury by improving inflammation and
pyroptosis in myocardial cells.*® Additionally, MSCs had anti-apoptotic effect on
alveolar epithelial cells and ameliorated I/R injury after lung transplantation.’’
Furthermore, in renal I/R, MSC-EVs protected tubular epithelial cells against oxidative
insult.>®® On the other hand, unlike peripheral organs, CNS homeostasis maintenance
requires specialized vascular barrier integrity, which is indispensable for immune
privilege and a defined microenvironment of the CNS. Given the importance of the
CNS barrier, it is believed that MSCs not only protect against neuronal apoptosis but
also restore the integrity of the BBB to avoid downstream damage after ischemic
stroke.?’ Similarly, in our study, we also reported that iMSCs restored the integrity of
the BRB and alleviated the apoptosis of retinal neural cells after retinal I/R. Based on
special structure and function of these barriers discussed above and our findings,
protection and repair of these barriers constitute unique therapeutic mechanisms of
MSC-based therapy for I/R injury to the CNS.

The BBB and BRB, as blood-neural barriers, have a similar structure and play an
important role in reliable neuronal activity by maintaining a precisely adjustable
microenvironment.** The BBB is the bridge between blood and brain tissue and is
composed mainly of brain capillary endothelial cells, base membrane, glial membrane
and peripheral pericytes and astrocytes. These specifically and finely developed

11
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structures allow the BBB to mechanically prevent substances such as toxins, drugs and
pathogens from entering the brain. In addition, due to the existence of different types
of transporters on endothelial cells, nutrients and metabolites can smoothly pass
through to maintain the homeostasis of the microenvironment of the nervous system.
The intact BBB structure and functions are essential for structural and functional brain
connectivity, synaptic activity and information processing.*! Similarly, the BRB is a
typical neurovascular unit that is characteristic of the retina.*’ Suggested to be
composed of tightly conjunct endothelial cells combined with pericytes, astrocytes,
microcytes and Miiller cells, the BRB shares an analogous mechanism with the BBB in
that it excludes immune cells and prevents disturbing substances from entering retinal
tissue.*’ Breakdown of the BBB or BRB, induced by pathologically increased levels of
vascular endothelial growth factor or other mediators in the occurrence of pathological
conditions such as trauma, I/R or tumor, can result in vasogenic edema and significant
clinical problems such as brain morbidity or vision loss, respectively.**

MSC-based therapy for CNS barrier preservation is promising. For BBB
preservation, MSCs are mainly given by intravenous injection. As most intravenously
infused MSCs are distributed in the lungs, pulmonary microembolism is considered as
an adverse effect.*> Although MSCs are capable of transendothelial migration to
infiltrate the brain, reaching enough cells for treatment is difficult.*® Therefore, for
safety and efficacy considerations, the intravenous injection of MSC-EVs is superior to
the intravenous injection of MSCs for BBB treatment because of their small diameter
and ability to cross the BBB. MSC-EVs stabilize the integrity of the BBB by enhancing

12
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Notchl signaling in endothelial cells, upregulating VEGF receptor 1 expression in
pericytes,?’ or inhibiting nuclear transcription factor-kappaB signaling in astrocytes.*®
The above limitations of MSCs could be avoided by intravitreal injection for BRB
preservation. In addition to repairing barriers through biochemical mechanisms similar
to those of MSC-EVs, the structural support capacity of MSCs is advantageous over
that of MSC-EVs.* In our study, we found that iMSCs can directly integrate into the
BRB and act as biopatches for BRB preservation. Our results showed that iMSCs are

promising future therapeutic candidates for treating retinal I/R-related diseases.

MATERIALS AND METHODS
Ethics statement
All animal experiments in this study complied with the guidelines of Sun Yat-sen

University and were approved by the Ethics Committee of Sun Yat-sen University

(2021001559, 2024000008).

Animals and retinal I/R model

Male WT C57BL/6 mice (8-10 weeks old) were purchased from Guangdong
Medical Laboratory Animal Centre (Guangzhou, China). All mice were provided free
access to a standard rodent diet and drinking water and were kept in a colony room with
a 12-h light/12-h dark cycle at the Sun Yat-sen University Animal Centre. The internal
carotid artery (ICA) provides blood to the retina through the ophthalmic artery;* thus,

the retinal I/R model was generated as follows: the mice were anesthetized with 1.5%

13
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isoflurane in a 30% 02/69% N20 mixture, and a heating pad was used to maintain the
body temperature at 37 + 0.5 °C. Unilateral ligation (left side) of the ICA was performed
using a 6/0 surgical suture for 40 minutes of ischemia, after which the suture was

removed to allow reperfusion for 6 hours, 1 day or 3 days.

Generation and identification of iMSCs

To differentiate hiPSCs into MSCs, the procedure was performed as previously
described.'® First, hiPSCs established as described were differentiated into
neuromesodermal progenitors (NMPs).>® Confluent hiPSCs were isolated into single
cells by incubation with Accutase for 2-3 minutes at 37 °C. Single cells were
subsequently seeded into Matrigel-coated plates and cultured for 24 hours in mTeSR
medium supplemented with 10 pM Y27632 (Sigma—Aldrich, St. Louis, MO, USA). For
NMP differentiation, these cells were then cultured in Essential 6 medium containing
20 ng/ml basic fibroblast growth factor (bFGF), with or without 2—5 ng/ml transforming
growth factor-B1 (TGFB1) (both from Pepro Tech, Rocky Hill, NJ, USA), and 10 uM
Chir99021 (Stemgent, Cambridge, MA, USA) for 2—-5 days. For MSC differentiation,
paraxial mesoderm cells that had been differentiated in medium supplemented with
bFGF, TGFB1, and Chir99021 for 4-5 days were subsequently cultured in
MesenCult™-ACF Plus Medium (Stemcell Technologies, Vancouver, Canada) for 2—-3
weeks. The typical markers of MSCs were identified through flow cytometry as

described below.

14
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Cell culture
iMSCs were cultured in MesenCult™-ACF Plus Medium supplemented with 10%
fetal bovine serum (FBS) and 1% penicillin and streptomycin and were incubated in 5%

COz at 37 °C.

Multiple differentiation potential of iMSCs

Multiple differentiation assays, including osteogenic induction, adipogenic
induction, and chondrogenic induction, were performed as previously described.’!->2
For osteogenic induction, iMSCs were cultured in alpha MEM medium supplemented
with 100 nM dexamethasone, 10 mM p-glycerophosphate, 50 mM ascorbic acid-2-
phosphate (Sigma—Aldrich, St. Louis, MO, USA), 10% FBS and 1% penicillin and
streptomycin for 21 days. Then, the osteoblasts were fixed in cold 95% ethanol for 5
minutes and stained with 2% Alizarin Red solution.

For adipogenic induction, iMSCs were cultured in alpha MEM medium
supplemented with 1 mM dexamethasone, 500 mM 3-isobutyl-1-methylxanthine,
10 mg/mL insulin, 100 mM indomethacin (Sigma—Aldrich, St. Louis, MO, USA), 10%
FBS, and 1% penicillin and streptomycin for 21 days. Subsequently, the resulting cells
were fixed with 4% paraformaldehyde (PFA; Phygene, Fuzhou, China) for 30 minutes
at room temperature and stained with fresh Oil Red O solution for 50 minutes.

For chondrogenic induction, the cells were cultured in a 15-ml conical tube
containing differentiation basal medium (Sigma—Aldrich, St. Louis, MO, USA), which
was changed every 3 days. After 21 days, the cell clumps were fixed in 4% PFA and

15
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stained with toluidine blue.

Intravitreal injection

Intravitreal injection was performed under a stereomicroscope as previously
described.’® The mice were anesthetized as described above, and then the eyes were
prepped with topical anesthetic. A cell suspension containing 1 x 10*iMSCs in 0.5 pL
of PBS was slowly injected into the vitreous cavity of model eyes via a microinjector
(Hamilton, Shanghai, China). The same volume of PBS was injected into the eyes of

the control group.

Retina processing and immunofluorescence

The mice were anesthetized as described above and perfused with ice-cold saline
followed by 4% PFA. For immunofluorescence of whole-mounted neural retinas,
eyeballs were removed and fixed in 4% PFA for 15 minutes at 4 °C. After the cornea
and crystalline lens were removed, the residual part was fixed in 4% PFA for 3 hours at
4 °C. The retinas were removed by orbital dissection, washed with PBS, and
permeabilized in PBS containing 5% BSA (Phygene, Fuzhou, China) and 0.5% Triton
X-100 (Sangon Biotech, Shanghai, China) overnight at 4 °C. For immunofluorescence
of retinal sections, eyeballs were removed, fixed in 4% PFA overnight at 4 °C, and cut
into 20 pm frozen cryosections. Retinal sections were fixed in 4% PFA for 20 minutes,
permeabilized in 0.15% Triton X-100 for 15 minutes, and blocked with PBS-5% normal
goat serum (BOSTER, Pleasanton, CA, USA) for 1 hour. Both whole-mounted neural

16
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retinas and retinal sections were incubated with appropriate primary and secondary
antibodies. Images were captured using Dragonfly high-speed confocal microscopy
(ANDOR, Oxford Instruments, Oxford, UK). For immunofluorescence of cells, the
hiPSCs were fixed with 4% PFA at room temperature for 20 minutes and rinsed three
times with PBS. Then, the cells were permeabilized with 0.3% Triton X-100 in PBS
and incubated overnight at 4 °C with primary antibodies. Secondary antibodies were
incubated for 2 hours at room temperature. The samples were counterstained with 4’,6-
diamidino-2-phenylindole (DAPI; Sigma—Aldrich, St. Louis, MO, USA). Images were
captured using a confocal laser-scanning microscope (LSM 880; Carl Zeiss, Jena,

Germany). All of the utilized antibodies are listed in Supplemental Table 1.

TUNEL staining

The number of apoptotic cells in neural retinas was determined via TUNEL staining
using a TUNEL Apoptosis Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA),
and the nuclei were stained with DAPI. Images were captured using Dragonfly high-

speed confocal microscopy.

Isolation of retinal and cellular RNA and quantitative real-time polymerase chain
reaction (QRT-PCR)

The mice were directly sacrificed by an overdose of sodium pentobarbital without
perfusion, after which the retinas were removed and dissociated. For iMSCs, cell pellets

were collected. Total RNA was extracted from retinas or iMSCs using a RNeasy mini
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kit (QIAGEN, Duesseldorf, Germany) according to the manufacturer’s instructions,
and RNA quality control was performed using a Nanodrop 2000 (Thermo Fisher
Scientific, Waltham, MA, USA). Then, cDNA was reverse transcribed using a Revert-
Aid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA).
SYBR Green gqRT-PCR Super Mix (Roche, Basel, Switzerland) was used to conduct
RT-PCR, which was performed using a Light Cycler 480 detection system (Roche,
Basel, Switzerland) as previously described.>* The sequences of primers used in this

study are presented in Supplemental Table 4.

Flow cytometric analysis of retinas and iMSCs

The mice were anesthetized as described above and perfused with ice-cold saline
followed by 4% PFA, and the retinas were isolated. The retinas were mechanically
homogenized and passed through 40 pum filters. For iMSCs, the cells were trypsinized
and collected. After centrifugation, the cell pellets were resuspended and washed 3
times with PBS. Both the retinal cell suspension and the iMSCs were stained with the
appropriate antibodies listed in Supplemental Table 2. Fluorescence-activated cell
sorting (FACS) was performed using CytoFLEX and CytoFLEX s (Beckman Coulter,

CA, USA) flow cytometers.

Western blotting
The cells were extracted and sonicated in RIPA buffer (Beyotime, Shanghai, China)
containing protease and phosphatase inhibitors (Roche, Basel, Switzerland), and the
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resulting supernatant was centrifuged. The protein concentration was then measured
using a BCA protein assay kit (Cwbiotech, Beijing, China) and normalized across
samples. Equal amounts of protein were resolved and separated by SDS-PAGE and
then electrotransferred onto a 0.45-um-pore size polyvinylidene difluoride membrane
(Millipore, Boston, MA, USA). The membranes were blocked with 5% nonfat milk
(Phygene, Fuzhou, China) for 1 hour and then incubated with the appropriate primary
antibodies overnight at 4 °C. Specifically, bound primary antibodies were detected
using horseradish peroxidase-coupled secondary antibodies and enhanced
chemiluminescence (Millipore, Boston, MA, USA). The primary and secondary

antibodies are listed in Supplemental Table 3.

Vector construction and lentiviral transduction

To generate iIMSC!To™a and iMSCCCR® lines, lentiviruses containing the tdTomato
vector and CCRb5-overexpressing vector respectively were purchased from WZ
biosciences Company (Shandong, China). Before lentiviral transduction, iMSCs were
seeded into 24-well plates and incubated in 5% CO2 at 37 °C overnight. The optimal
cell density for lentiviral transduction is approximately 50%. The medium was
subsequently removed, and 2 ml of fresh complete medium supplemented with 6 pg/ml
polybrene was added. The lentiviruses were added to the cells at an MOI of 10. Twenty-
four hours later, the medium containing the lentiviruses was replaced with fresh
medium. At 48 to 72 hours after lentiviral transduction, the expression of red

fluorescence protein (RFP) was observed via fluorescence microscopy to determine the
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transfection efficiency. Then, the RFP* iMSCs were sorted through FACS and used for
subsequent experiments. Quantitative PCR and western blotting were performed to

detect the CCR5 mRNA and protein levels, respectively, in the iMSCCCR® line.

Transwell migration assay

Transwell migration assays were performed using transwell chambers (24-well
plate, 8-um pore size; Corning Incorporated, Corning, NY, USA). iMSCCCR® or
iMSctTemato \were suspended in serum-free medium and adjusted to a density of
1 x 10° cells/ml. One hundred microliters of cell suspension was added to the upper
chamber of the migration well. In contrast, 100 pL of serum-free medium supplemented
with the chemokine mCCL5 (100 ng/ml) or hCCL5 (50 ng/ml) (MedChem Express,
Monmouth Junction, NJ, USA) was loaded into the lower chamber. Twenty-four hours
later, the cells that migrated through the underside of the insert membrane were fixed
with 4% PFA for 30 minutes and stained with crystal violet (Beyotime, Shanghai, China)
for 20 minutes. Then, the cells in five random separate microscope fields were counted

(400x magnification).

Electroretinography

To evaluate the visual function of the mice, photopic flash electroretinography
(ERG) was performed using Diagnosys Espion system (Diagnosys LLC, Lowell, MA,
USA). To demonstrate the effect of iMSC treatment, ERG was performed at 1 week

after intravitreal injection. Before the ERG test, the mice were incubated in a dark
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environment for 12 hours and then anesthetized as described above, after which the
pupils were dilated with 0.5% tropicamide (Macklin, Shanghai, China). Ring-shaped
gold recording electrodes were placed on the cornea of both eyes. A pair of reference
needle electrodes made of stainless steel were placed subcutaneously behind the ears,
and a ground electrode was placed subcutaneously by the tail. After 10 minutes of
adaptation to green light at 5 cd.s/m?, the eyes of the tested mouse were exposed to a
series of light flashes ranging from 0.01 to 3 cd.s/m?, with 32 flashes at each light
intensity and 0.5 seconds as the interval of each flash. The body temperature of the mice
was maintained at 37 + 0.5 °C with a heating pad throughout the entire procedure. The
results were analyzed for a-wave, b-wave, and implicit time using ERGView 4.380R

software (OcuScience, Henderson, NV, USA).

KEGG pathway analysis

Transcriptome sequencing was performed by Suzhou PANOMIX Biomedical Tech
Co., Ltd. KEGG pathway enrichment analysis was performed via the Bioconductor
package “GeneAnswers” to identify critical pathways closely related to the impact of
I/R on the retina. P < 0.05 was considered to indicate statistical significance and to

achieve significant enrichment.

GSEA
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GSEA was conducted, and the plots were generated at http://www.webgestalt.org/.
All P values were corrected for multiple testing methods, and the thresholds for

significant enrichment were P <0.05 and FDR <0.25.

Scheme creation
All the schemes used in this study were created with BioRender (BioRender,

Toronto, Canada; https://www.biorender.com/).

Statistical analysis

GraphPad Prism 8 software (San Diego, CA, USA) was used for all the statistical
analyses. ImageJ 1.52a software (Wayne Rasband, MD, USA) was used to analyze the
immunostaining images. CytExpert 2.0 software (Beckman Coulter, CA, USA) and
FlowJo V.10.0 software (Mario Roederer, OR, USA) were used to analyze the FACS
data. Ingenuity Pathway Analysis (IPA; Version: 52912811) software (Ingenuity
Systems, Inc.) was used to analyze the RNA-Seq data. The data obtained from multiple
experiments were presented as the mean £ SEM. Depending on the data, Student’s t
test and one-way and two-way analysis of variance (ANOVA) were used for
comparisons and indicated in the legends of each figure. Differences were considered

significant when P < 0.05.

AVAILABILITY OF DATA AND MATERIALS
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The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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FIGURE LEGENDS

Fig. 1 BRB breakdown after retinal I/R

(A, C, E, G) Patterns (left) and representative confocal fluorescence images (right) of
the distribution of Claudin5 (purple) associated with IB4" blood vessels (green), NG2*
pericyte (red) coverage of IB4" vessels (green), and protein (Fibrinogen, red) and
Ter119" RBCs (red) leakage in retinas from the sham, 6 h, 1 d, and 3 d after retinal I/R
groups. Scale bar, 50 um. (B, D, F, H) Quantification of A, C, E, and G (n=7 mice per
group). (I) Representative confocal fluorescence images of TUNEL staining in the
retinal center (Central), mid-periphery (Mid-Ph) and far-periphery (Far-Ph) from the
sham, 6 h, 1 d, and 3 d after retinal I/R groups. Scale bar, 20 um. (J) Quantification of
TUNEL-positive rates in retinas from the sham, 6 h, 1 d, and 3 d after retinal I/R groups
(n=4 mice per group). The data are expressed as the mean + SEM. All statistical
significance was calculated using two-way analysis of variance (ANOVA). *p <0.05;

**p <0.01; ***p <0.001; ****p <0.0001; ns, not significant.

Fig. 2 CCLS expression increased and colocalized with the BRB after retinal I/R
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(A) KEGG pathway enrichment analysis was performed for retinas from the sham and
1 d after retinal I/R groups to explore the possible signaling pathways that changed after
retinal I/R (n=3 mice per group). (B) qPCR was performed to measure the expression
of CCL2, CCL5, CCL7, CCL12, CXCL2, and CXCL12 in retinas from the sham and 1
d after retinal I/R groups (n=6 mice per group). (C) qPCR was performed to compare
the expression of CCLS5 in retinas from the sham, 6 h, 1 d and 3 d after retinal I/R groups
(n=6 mice per group). (D-E) Flow cytometry analysis and quantification of the MFI of
CCLS5 in retinas from the sham and 1 d after retinal I/R groups (n=4 mice per group).
(F) Representative confocal fluorescence images of the distribution of CCLS5 (red)
around IB4" blood vessels (green) in retinas from the sham and 1 d after retinal I/R
groups. Scale bar, 50 pm. (G) Scheme (left) of the structure of the retina and the division
of the retinal plexus into three layers, namely, the superficial, intermediate and deep
layers. Quantification (right) of the percentage of vessels colocalized with CCL5 in
each layer. Analysis and statistics of colocalization were performed via ImageJ and a
plug-in named coloc2. The data are expressed as the mean £ SEM. All statistical
significance was calculated using Student’s t test or two-way ANOVA. *p <0.05; **p

<0.01; ****p <0.0001; ns, not significant.

Fig. 3 Overexpression of CCRS improved the migratory capacity of iMSCs in vitro
and the vascular colonization capacity of iMSCs in vivo

(A) Transwell migration assays were performed to compare the migratory capacity of
iMSCUTomaie and iMSCERS under the recruitment of hCCL5 and mCCLS5 respectively.
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Scale bars, 100 um. (B) Pattern (upward) and quantification of the transwell migration
assay results. (C) Representative images of iMSCC“® (red) and iMSCUTmato (red)
retained in retinas at 4 dpt and 7 dpt from the sham and retinal I/R groups. Scale bar,
100 pm. (D) Pattern (upward) and quantification analyses of the number of iMSCC“R>
and iMSC'Toma° retained in retinas and their percentages on vessels at 4 dpt and 7 dpt
in the sham and retinal I/R groups (n=6 mice per group). The data are expressed as the
mean + SEM. All statistical significance was calculated using one- or two-way ANOVA.

**p <0.01; ***p <0.001; ns, not significant.

Fig. 4 iMSCCCRS infusion reversed damage to the BRB caused by retinal I/R

(A) Scheme of the evaluation of iMSC-based therapy on retinal I/R. (B-D, F)
Representative confocal fluorescence images and quantification of the distribution of
Claudin5 (purple) associated with IB4" blood vessels (green), NG2" pericyte (green)
coverage of IB4" blood vessels (gray), and Ter119" RBCs (red) leakage in retinas from
the sham, PBS, iMSCTma and iMSCCRS groups (n=7 mice per group). Scale bar, 50
um. (E) Representative confocal fluorescence images of TUNEL staining and
quantification of TUNEL-positive rates in the Central, Mid-Ph and Far-Ph positions of
retinas from the sham, PBS, iMSCUTma and iMSCCR® groups (n=4 mice per group).
Scale bar, 20 pm. The data are expressed as the mean = SEM. All statistical significance
was calculated using one- or two-way ANOVA. *p <0.05; **p <0.01; ***p <0.001;

**%%p <0.0001; ns, not significant.
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Fig. 5 iMSCCCRS infusion recovered damage to visual function caused by retinal
I/R

(A, B) ERG of amplitude and the time to peak of a- and b-waves among the sham, PBS,
iMSCUTomaie and iMSCCRS groups (n=6 mice per group). The light intensity consisted
of 4 increasing levels (dim to bright), including 0.01, 0.1, 1 and 3 cd.s/m?. The data are
expressed as the mean +£ SEM. All statistical significance was calculated using one-way

ANOVA. *p <0.05; **p <0.01; ***p <0.001; ns, not significant.
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Tao Li and colleagues conducted this study to offer new insights into
genetically modulated mesenchymal stromal cells acting as biopatches to
restore blood-retinal barrier integrity for treating vision-threatening retinal

diseases associated with retinal ischemia/reperfusion.



